

Introduction

Motivation
1. Curvatures of Apollonian Circle Packings: Apollonian circle pace
peatedly filling the interstices between mutually tangent circles with
circles. It is possible for every circle in such a packing to have intervature, and we call such a packing an integral Apollonian circle picthe curvatures, or reciprocals of the radii. It is already proved that
integer radius in each circle, the curvatures will still be integers.
what integers are there appeared to be the curvatures of Apollonia

$$32^{\circ}_{33}$$
 32°_{32} 33°_{32} 32°_{32}
2. Zaremba's Conjecture : Conjecture Z (Zaremba 1972). Every
is the denominator of a reduced fraction whose partial quotient
bounded. That is, there exists some absolute C > 1 so that for
some (b, d) = 1, so that b/d = $[a_1, ..., a_k]$ with max $a_j \in C$.
Connection to Group Orbits
• Given a subgroup $\Gamma < GL_d(\mathbb{Z})$ and a vector $v_0 \in \mathbb{Z}^d$, we are intere
orbit:
 $\mathcal{O} := \Gamma \cdot v_0$
and the set of represented integers:
 $\mathcal{S} := < w_0, \mathcal{O} > \subset \mathbb{Z}$,
• Many problems can be reduced to the study of the integers comin
orbits.
– Curvatures of Apollonian Circle Packings:
 Γ is finitely generated and $\Gamma < SL_4(\mathbb{Z})$
– Zaremba's Conjecture, Γ is finitely generated and $\Gamma < PSL_2$
 $\Gamma_C = < \begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix} : a \in C >$

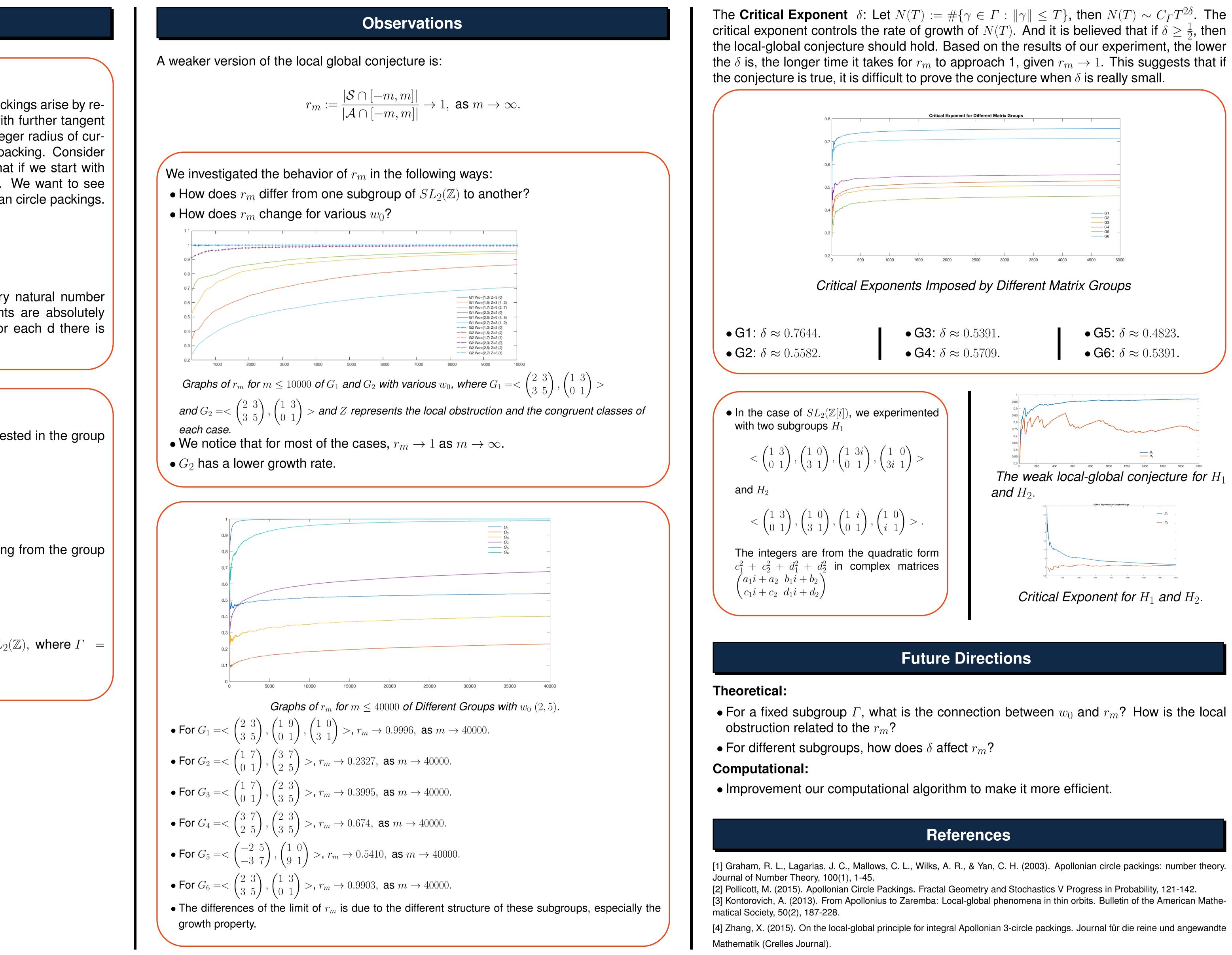
Local To Global Phenomenon

• The Admissible Set:

 $\mathcal{A} = \{ n \in \mathbb{Z} : n \in \mathcal{S} \pmod{q} \} \text{ for any } q \in \mathbb{N}$

Strong Approximation Property implies that $\exists Z \in \mathbb{Z}$, such that

$$n \in \mathcal{A} \iff n \in \mathcal{A}(mod\mathcal{Z})$$


where \mathcal{Z} is defined as the local obstruction.

• The local global conjecture:

$$n \in \mathcal{A} \iff n \in \mathcal{S}$$

Finding integers from group orbits

Jake Shin, Yike Xu, Catherine Zhang, Xin Zhang **Team Leader: Junxian Li** Faculty mentor: Xin Zhang

Support for this project was provided by the Illinois Geometry Lab and the Department of Mathematics at the University of Illinois at Urbana-Champaign.

